

EUROPEAN UNION

Seminar Speaker Series

in the framework of Interreg V-A project CAPSID

presents

Prof. Jörg Menche

Universtity of Vienna, Department of Structural & Computational Biology

Network Medicine

From protein-protein to drug-drug and human-machine interactions.

8.10.2020 at 14:00

Online virtual talk via Zoom

Join this talk here

Organized by:

EUROPEAN UNION

Prof. Jörg Menche

Full professor University of Vienna Center for Molecular Biology (Max Perutz Labs) and Faculty of Mathematics

TALK TITLE

Network Medicine - From protein-protein to drug-drug and human-machine interactions

RESEARCH GROUP FOCUS

Prof. Jörg Menche leads an international and **truly interdisciplinary team**, with backgrounds ranging from biology and bioinformatics to physics, mathematics and arts.

His research group works in the area of Network Medicine, **an emerging interdisciplinary approach towards understanding human disease.** The ever growing wealth of data, from individual genome sequencing to population wide health records, reflects the many levels of organization that play a role in disease phenomena, from protein-DNA interactions to signal transduction, from metabolism to social interactions implicated in disease transmission. In view of the complicated interactions within and across these levels, network science may provide invaluable tools to help disentangle this enormous complexity and understand disease phenomena in a holistic fashion.

REFERENCES

Mapping the perturbome network of cellular perturbations. M Caldera, F Müller, I Kaltenbrunner, M Licciardello, C-Hugues Lardeau, S Kubicek, <u>J Menche</u>. *Nature Communications 10(1), 1-14; 2019.*

Morphological profiling of human T and NK lymphocytes identifies actin-mediated control of the immunological synapse. Y German, L Vulliard, A Rubio, K Boztug, A Ferrand, <u>J Menche</u>, L Dupre. *bioRxiv 2020.*

Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. A Lercher, A Bhattacharya, AM Popa, et al., and <u>J Menche</u>, PN Cheng, G Schabbauer, M Trauner, K Klavins, A Bergthaler. *Immunity 51, 1-14; 2019.*

Organized by:

